KGF alters gene expression in human airway epithelia: potential regulation of the inflammatory response.
نویسندگان
چکیده
Keratinocyte growth factor (KGF) regulates several functions in adult and developing lung epithelia; it causes proliferation, stimulates secretion of fluid and electrolytes, enhances repair, and may minimize injury. To gain insight into the molecular processes influenced by KGF, we applied KGF to primary cultures of well-differentiated human airway epithelia and used microarray hybridization to assess the abundance of gene transcripts. Of 7,069 genes tested, KGF changed expression levels of 910. Earlier studies showed that KGF causes epithelial proliferation, and as expected, treatment altered expression of numerous genes involved in cell proliferation. We found that KGF stimulated transepithelial Cl(-) transport, but the number of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) transcripts fell. Although transcripts for ClC-1 and ClC-7 Cl(-) channels increased, KGF failed to augment transepithelial Cl(-) transport in CF epithelia, suggesting that KGF-stimulated Cl(-) transport in differentiated airway epithelia depends on the CFTR Cl(-) channel. Interestingly, KGF decreased transcripts for many interferon (IFN)-induced genes. IFN causes trafficking of Stat dimers to the nucleus, where they activate transcription of IFN-induced genes. We found that KGF prevented the IFN-stimulated trafficking of Stat1 from the cytosol to the nucleus, suggesting a molecular mechanism for KGF-mediated suppression of the IFN-signaling pathway. These results suggest that in addition to stimulating proliferation and repair of damaged airway epithelia, KGF stimulates Cl(-) transport and may dampen the response of epithelial cells to inflammatory mediators.
منابع مشابه
Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia.
Gene transfer with recombinant murine leukemia viruses (MuLV) provides the potential to permanently correct inherited lung diseases, such as cystic fibrosis (CF). Several problems prevent the application of MuLV-based recombinant retroviruses to lung gene therapy: (i) the lack of cell proliferation in mature pulmonary epithelia, (ii) inefficient gene transfer with a vector applied to the apical...
متن کاملAzithromycin Treatment Alters Gene Expression in Inflammatory, Lipid Metabolism, and Cell Cycle Pathways in Well-Differentiated Human Airway Epithelia
Prolonged macrolide antibiotic therapy at low doses improves clinical outcome in patients affected with diffuse panbronchiolitis and cystic fibrosis. Consensus is building that the therapeutic effects are due to anti-inflammatory, rather than anti-microbial activities, but the mode of action is likely complex. To gain insights into how the macrolide azithromycin (AZT) modulates inflammatory res...
متن کاملMelatonin: A therapeutic potential for the neurohormone in gallbladder disorders
In humans, N-acetyl-5-methoxytryptamine (melatonin), a neurohormone widely found in plants and animal sources, is synthesized from serotonin primarily by the pineal gland. However, it it is also produced in a number of other areas, e.g. the gastrointestinal tract. Melatonin regulates various biological and physiologic body functions and its role in the regulation of circadian rhythms, particula...
متن کاملThe Role of Interleukin (IL-22) in immune response to human diseases
Background and aims: IL-22 is an alpha- helical cytokine. IL-22 binds to a heterodimeric cell surface receptor composed of IL-10R2 and IL-22R1subunits. IL-22R is expressed on tissue cells, and it is absent on immune cells. L-22 and IL-10 receptor chains play a role in cellular targeting and signal transduction to selectively initiate and regulate immune responses. The aim of this study was to i...
متن کاملMelatonin: A therapeutic potential for the neurohormone in gallbladder disorders
In humans, N-acetyl-5-methoxytryptamine (melatonin), a neurohormone widely found in plants and animal sources, is synthesized from serotonin primarily by the pineal gland. However, it it is also produced in a number of other areas, e.g. the gastrointestinal tract. Melatonin regulates various biological and physiologic body functions and its role in the regulation of circadian rhythms, particula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2001